from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("XLabs-AI/flux-ip-adapter")
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"fill-in-base-model", controlnet=controlnet
)
import gradio as gr
from filters import as_gray
def process(input_image):
output_image = as_gray(input_image)
return output_image
demo = gr.Interface(
process,
"image",
"image",
examples=["lion.jpg", "logo.png"],
)
demo.launch()
from skimage.color import rgb2gray
def as_gray(image):
return rgb2gray(image)
# Same syntax as requirements.txt
scikit-image